Abp1 utilizes the Arp2/3 complex activator Scar/WAVE in bristle development.

نویسندگان

  • Nicole Koch
  • Elavarasi Dharmalingam
  • Martin Westermann
  • Britta Qualmann
  • Ulrich Thomas
  • Michael M Kessels
چکیده

Many developmental processes rely on cortical actin dynamics; however, the mechanisms of its fine control at the cell cortex are still largely unknown. Our analyses demonstrate that the lipid- and F-actin-binding protein Abp1 is crucial for actin-driven bristle development in Drosophila melanogaster. Combined genetic, cell biological and biochemical analyses reveal that Abp1 triggers cortical Arp2/3-mediated actin nucleation by complex formation with Scar in bristle development. The role of the plasma-membrane-associated Abp1 subpool was highlighted by constitutively membrane-anchored Abp1. Such gain-of-function experiments led to a severe split-bristle phenotype, which was negatively correlated with bristle length. This phenotype was dependent on Scar but not on WASP and required the Scar-interacting SH3 domain of Abp1. Strikingly, knockout of abp1 led to defects in both microchaete and macrochaete bristle integrity. Importantly, Arp2- and Scar-deficient flies displayed similar bristle phenotypes. Microchaetes of flies deficient for Abp1, Arp2 and Scar functions had kinks, whereas those of wasp heterozygous flies did not. Electron microscopy analyses revealed that abp1 knockout, Arp2 RNAi and Scar RNAi all led to distorted macrochaetes with an excessive number of ridges. Interestingly, despite the physical association of Abp1 with Scar and its ability to use the Arp2/3 complex activator as an effector, abp1 knockout did not affect Scar stability. This is in contrast to classical Scar complex components, such as Kette or Sra-1. Our work reveals that Abp1 is an important, Scar-interacting factor controlling cortical Arp2/3-mediated actin nucleation and unravels a novel layer of complexity in the scrupulous control of cortical actin nucleation during sensory organ formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of N-WASP and the Arp2/3 Complex by Abp1 Controls Neuronal Morphology

Polymerization and organization of actin filaments into complex superstructures is indispensable for structure and function of neuronal networks. We here report that knock down of the F-actin-binding protein Abp1, which is important for endocytosis and synaptic organization, results in changes in axon development virtually identical to Arp2/3 complex inhibition, i.e., a selective increase of ax...

متن کامل

Terminal Axonal Arborization and Synaptic Bouton Formation Critically Rely on Abp1 and the Arp2/3 Complex

Neuronal network formation depends on properly timed and localized generation of presynaptic as well as postsynaptic structures. Although of utmost importance for understanding development and plasticity of the nervous system and neurodegenerative diseases, the molecular mechanisms that ensure the fine-control needed for coordinated establishment of pre- and postsynapses are still largely unkno...

متن کامل

BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis.

The Arp2/3 complex, a highly conserved nucleator of F-actin polymerization, is essential for a variety of eukaryotic cellular processes, including epidermal cell morphogenesis in Arabidopsis thaliana. Efficient nucleation of actin filaments by the Arp2/3 complex requires the presence of an activator such as a member of the Scar/WAVE family. In mammalian cells, a multiprotein complex consisting ...

متن کامل

Arabidopsis BRICK1/HSPC300 Is an Essential WAVE-Complex Subunit that Selectively Stabilizes the Arp2/3 Activator SCAR2

The actin cytoskeleton dynamically reorganizes the cytoplasm during cell morphogenesis. The actin-related protein (Arp)2/3 complex is a potent nucleator of actin filaments that controls a variety of endomembrane functions including the endocytic internalization of plasma membrane , vacuole biogenesis , plasma-membrane protrusion in crawling cells , and membrane trafficking from the Golgi . Ther...

متن کامل

Arabidopsis GNARLED Encodes a NAP125 Homolog that Positively Regulates ARP2/3

In migrating cells, the actin filament nucleation activity of ARP2/3 is an essential component of dynamic cell shape change and motility. In response to signals from the small GTPase Rac1, alterations in the composition and/or subcellular localization of the WAVE complex lead to ARP2/3 activation. The human WAVE complex subunit, WAVE1/SCAR1, was first identified in Dictyostelium and is a direct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 125 Pt 15  شماره 

صفحات  -

تاریخ انتشار 2012